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SUMMARY

The problem treated here deais with the "debugging” of o new
complex system during the Inftial pertod of fts total life. During
this period failures and errors are corrected as they occur, with re-
sulting Improvement in subscquent performance of the system., One
mathenatical fdealization of teds process leads to the assumption that
systen fallure rate is decreasfong with time, In practice, the de-
bugring phase §s consfdered completed vhen the faflure rate reaches
an equilibrium or constant valuc. Models arce tormulated for this
phenomenon, Maximom likelth d estimwates are obtafned for relevant
{ajlure rate functions and {-~ the e¢nd of the debugping period. A
conscervative upper confidence bound on the stable faflure rate s
obtafuned,

The problen {8 treated from a point of view which lles between
a completely nonparametric approach fn which no fnforemtion §s assumcd
available concerning the form of the distribution, and a pavametric
outlook in which the form of the distribution §8 assumcd known but a

finite nunber of paramcters nced to be cstimated,
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1, INRTRODUCTION

1t {8 common practice after inatalling & new complex system such
as that fnvolving & computer, afrplanc, etc., to "debug” it during the
fnitial portion of fts total life. During this debugging perfod,
fajlurcs and errore ure corrected as they occur, with resulting fm-
provement ¢n subsequent system performince. One mathematical fdeali-
gation of this process leads to the assumpt fon that system failure
rate (s decrcasing with time. In practice, the debugging phase s
consldered completed when the faflure rate reaches an equilibriun or
constant valuc, An important problem {s to determine when the constant
fajlure rate condition has been achieved and to cstimate the constant
fajlure vate,

Another problem selated to the debugging problem in many respects
fs the "burn-in" problen considercd by Barlow, Madansky, Proschan and
Scheuer (1963). The object of “burn-in" {s to eliminate poor quality
ftems in some populatfon. However, in the "burn-{n" problem con-
sidered there, ftems tail at most once and no repalr occurs. Lewis
(1964) developed a Lranching Poisson process for the analysis of com-
puter faflure patterns. Altliough he considers computer failure
timcs which ostensibly occur after the debugging period, his model
could be used for the debugging period as well. However, he makes
more assumptions than we do {n a highly structured mathematical model,

We obtain maximum likelihood estimators (MLE's) for the failure

ratec function and conscrvative confidence bounds on the failure rate at a

specificd time. This {8 done without the customary assumptions con-
cerning the form of the life distribution. The approach is intermediate
between a completely nonparametric point of view (in which no infor-
mation is ascumcd available concerning the form of the distribution)
and a paramectric outlook (in which the form of the distribution is
assumcd known, but a finite number of paramcters arc to be estimated).
Next we find methods which allow us to claim with specified (high)
assurance that the "stable” failure rate of a system which 1s being

debugged during development and initial use is no greater than a certain

value,
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Clearly, without a knowledge of the form of the dintribution of
a8 reicvant statistic, we canuot hope to ohtain exact confidence bounds,
However, we do obtain conscrvative confidence bounds. That is, our
assurance is at Jcast (inntcad of exactly equal to) a specified value
that the reliability, faflure rate, ete., falls in sonc confidence sct
determined from the observations., Of cou:se, the price we pay is that
the confidence sets tend to be larger than in the cuanc in hich the
fatlure diastribution {s assumcd to belong to a particular family of
distributions. However, we shall show that the conscrvative confidence
bounds obtained have the property that for a sember of the clasn of
dis:ributions under consideration the confldence bounds arc exact,

not merely conservatfive

2. DEBUCGING MODELS

Suppose Xl. the timc to the first failurce, has distribution F(t)
vith faflure rate r(t) which s nonincrcasing for t > 0. After cach
failure, rcpalr is performed {n a negligible length of time so that
the systenm operates again.  Assune furthee that the system failure rate
is vcstored to the value it had just prior to the faflure. Specifically,

assume that X,, the time between the (i-1)st faflure and the i-th fafl-

1
ure has distribution

F(S, , + x) - F(S, ,)
Fx (x) = 121 150 for x > 0

1 F(s, )

(vhere S1 . Xl + ... + X1 and F(x) = 1-F(x)), the conditional distri-

bution of a system of age Si-l'

Given observations Xl, XZ, 00 Xn, wve wish to estimate r(t) for
0<t < Sn. More generally, we may have k coples of
the systcm, each copy Independently operating as before, Observations

xij’ 1i=1,2, ..., k;3J=1, ..., n, are obtained. The distribution
of xi.1 is

F (x) =

F(S; 4y + 0 - F(S; 4 )
x -

13 F(S; 4
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the conditional distribution of an {tem of age Sl,j-l - X‘! + xl2 tooot xt,j-l'
Again we wish to estimate vr(t) durfng the obaervation period,
If the faflure rate first decreases and then becomes constant
for t > to’ we may wish to estimate to and r(to). It {8 of Interent
to note the common-sense procedure often used fn this sftuation to
cstimate t and r(to). A graph {s drawn in which the comulative num-
ber of faflures {5 plotted agafnst clapsed operationai time as in
Fig. 1. (Sce Rozner (1961)). Debupgging §s terminated approximately

at that point {n time when the slopes

of successive sccants (shown by dashed lines) appear to have reached
an cquilibrium value, These slopes represent faflure rates over
successive time perfods. System fmprovement corresponds to the situ-
atfon In which the slopes, %;, arc decreasing with h., However, duc
to statistical fluctuations, some reversals will occur, The common-
scnse graphical proccdure described above furnishes no precise way of
taking into account thesce reversals., Our technique, based on max{imum
likelihood, provides for this.

In many practical situvations ft is not rcalistic to insist on
determining the point t beyond which faflure rate §{s constant, Rather,
for pragmatic purposcs it suffices to find the point o such that
r(tl) - lﬂ: r(t) = ¢ for somc specificd ¢ > 0. Thus, we wish to find
the point beyond which further reliability improvement can decrease

the failure rate by only €. We wish to obtain maximun likelihood es-

timates of t and a conscrvative upper bound on r(tl).

3. MAXIMUM LIKELINOOD ESTIMATES FOR DELBUCGING MODELS

We begin by giving the MLE, ;n(t), for a decreasing failure rate
function bascd on a sanmplc of size n: Xl, X2. 000 [ Xn from one copy
of the system. The derivation of the MLE i{s very similar to that given
for a decreasing fajlure rate function based on n independent observa-
tions from a DFR distribution (Marshall and Proschan (1965)) and is

therefore omitted. (Sce also Brunk (1965) for rclated estimates.)
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Recall the notation S! - Xl + x2 + .. + x1 with the convention

q » o 1o 0 S
that 50 0. The MLE rn(t) is constant on the intcrvnla-fsi. 1+1]

for 1 = 0,..., n-1. “he MLE for r(t) on (S’. sl+ll is X1+l before

taking account of the fact that the distribution is DFR. If it turns
-1 -1 -1 . -1
out that X,~ > x2 > 0. 2 Xn , then we conclude that rn(t) - X1+1

]
"_’; Sy <25y

X1+l < X;+2. then we nust average to obtain a commen esntimate of

failure rate, [} (X * X1+2) —l. for S, <t <5, ,.,. Next we ex-

) -1, }-1 1 ]-1
anlne X%y oo, X .’, (Xjo1 * X)) [2 (X401 * X442

X;ij. 00D ¢ X;I to sce 1f these estinates of the failure rate on the

successive intervals are deereasing. If so, they constitute the MLE's

{1 «0,1,..., n=1. If a revcrsal occurs, say

of the fallure rates on the successive intervals. If not, we continuc

to average until no reversals remain. At the end of this process, we

"'.‘; i e s o
obtaln MLE's rl’"l > ’n1+l.n2 > > rnk+1.n satisfying:
. -[ll‘ (X, + ovn + X )]-1.
| 1 "1

-1
1
+l,n, * [~-1:~—— (X + ... + X )] ,

2 n2 n1 n1+1 nz

-1
1
£ - x + s 00 +
rnk+1,n ln S nk( "k+1 xn)} :
and
<
(rl,nl for 0 < ¢t < Snl
r
. - n+l,n, for S < t < 8§ 3.1
!'n(t) < 1 2 n, - °n, ( )
r for S <t «<S$§
\ nk+],n nk - &
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No estimate of r(t) is made for t > Sn since no data are available for
that time intecrval,
Example 1. 1In Fig. 1 the cumulative number of failures versus

times of “fallure is graplied for the following data

Time of Time Betwvecn
Failure Successive Failures

Sl = 25 hours xl = 25 hours

82 = 75 hours X2 = 50 hours

83 = 125 hours X3 = 50 hours

84 = 165 hours XA = 40 hours

S5 = 240 hours XS = 75 hours

86 = 310 hours X6 = 70 hours

s7 = 410 hours X7 = 100 hours

We are assuning that r(t) is decrcasing in t. If there were no
reversals in the observed failure rates on successive intervals, the

estimate of r(t) would be

. 1
r(t) =y, S

{ i-1 i

i.e.,
—1—- .l_.o .l.—a ._1._.0 .l._- .l_.- .__1
25’ 50° 50’ 40’ 75’ 70’ 100 °

1 1 1 1
However, since 50 < 40 and 75 < 750 ve have two reversals.

By combining the second, third,and fourth estimates (adding
numerators of the three estimates to obtain a new numerator, and
adding denominators to obtain a new denominator), we obtain as our new,

tentative estimate of r(t):

1. 3 3 3 1 .1.1

25 3 140° 140° 140° 75° 70° 100




The reversal %g < %6 is left. Combining these as before, we
obtaln finally as the MLE of r at the observations:
- 1
r(25) = R

r(75) = (125) = r(165) = 1%6

r(240) = r(310) = i%?

- 1
r(410) 160 °
Between successive observations, r is, of course, constant. Using

this "smoothed' data, we obtain a new graph in Fig. 2, in which the

slopes (failure rates) of Fig. 1 are smoothed.

MLE for a Decreasing Failure Rate from k Copies of the System

Using the same techniques as in the case of a single copy of the
system, treated above, we may obtain the MLE of the failure rate, assumed
decreasing.. Again the derivation of the MLE 1is similar to that given in
Marshall and Proschan (1965) and is omitted.

First the actual failure times (not intervals between failures)
for all k systems are pooled and ordereg. Call these ordered obser-

vations T, < T, < ... ¢ Tn’ wheren= ¥ n Between successive T

1 2 - i=1 i* i’
the failure rate estimate is constant as above. Our initial estimate

of the fatlure rate in an interval, before imposing the constraint that the

failure rate be decreasing, is computed as the reciprocal of the total
test time observed in that interval. Thus, on [0, T1], the initial es-
timate is (n Tl)-l, on (Tl’ T2]’ the initial estimate is {Nl(Tz-Tl)}_l,
on (T2,T3], the initial estimate is_{Nz(T3—T2)}-1, ces, ON (Tn-l’ Tn]'
the initial estimate is (Tn - Tn—l) where N, is the nunber of systems
simultaneously in operation during (Ti’ T1+1]. On (Tn,w), no estimate
of failure rate 1is made since no fallures are observed.

The initial estimates are then compared; if they are in decreasing

order, they constitute a MLE of r(t) on (O, Tn]. If a reversal occurs,

we average as above to eliminate it. For example, 1f Ni-l(Ti = Ti-l) >

1-1° Ty4g)

1 -1
is‘{E.[Ni—l(Ti_Ti-l) + Ni(Ti+1—Ti)]} . We continue averaging in this

Ni(Ti+1 - Ti)’ the revised estimate of the failure rate on (T
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fashion until all reversals are eliminated. The resulting estimate is
the MLE of r(t) on (O, Tn] under the assumption that r(t) is a de-

creasing function,

Strong Consistency of the MLE

In this subsection we show that the MLE for the decreasing failure
rate obtained above from k copies of the system 1s consistent. We

assume that at least t hours of operation are observed for each of k

systems. We shall show that as k -+ =, Ek(t) + r(t) with probability one.

Let ni(t) be the number of failures of the i-th system and
n=n(t) = ; ni(t) be the total number of failures over all k copiles
in [0, t]. 1%}

Then
Ugr(x) dx]j "'J'(tJ r(x) dx

Pny(£) = 3] = —5; e :

{ni(t), t > 0} is a non-homogenous Poisson process with intensity

function r(t), and Eni(t) = fg r(x) dx.

Lemma 3.1. Suppose k systems operate between observed failure

1-1 and Ti' Then Zi =) K fgi ) r(u) du, 1 = 1,2,...,n, are

independently and identically distributed with exponential distribution

P(z, < z) = 1-e 7.

For a proof see Barlow and Proschan (1969).]|

times T

t-s

let T, <t <T and r, (t ) = sup inf -
i- "0 i+1 k' o t>i+] s<i t-1 e

J=s

17Ty

Theorem 3.2. Let r(x) be nonincreasing in x > 0 and each of k

systems be observed for at least'to hours of operation. Then

- - - +
r(to) > lim sup rk(to) > lim inf rk(to) > r(to)

koo k-

with probability one.
Proof. Since the proof is essentially the same as in Marshall an

Proschan (1965) (abbreviated MP(1965)), we merely indicate the necessary

ROTOTwreY




changes in certain details. To make the identifications easier, we

assume that r(x) is nondecrcasing rather than nonincreasing as in the

hypothesis above. This merely affects the ordering of the inequalities
and the order in which we maximize and minimize.

The Xi in MP(1965) become Ti
of items on test between Xi and xi+l becomes the number k of items on
test between Ti and Ti+1' Let aj(n) + 1 be the index of the largest

y 3=0,1, as in MP(1965). Then

in our model, *thile the number, n-1,

Ti observation <t

3

T
SR LA O R

Ti r(tl)

are independent, identically distributed random varlables with mean

L As in MP(1965), we wish to show that P[lim sup B_.] = O, where
r(tl) n
B = i LN 2, - )|
n | a;(n)-a_(n)<m<a, (n) i=1 % r(tl)) ZEl

The main change in the proof occurs with respect to our definition

of A. Thelir set A becomes
n n

t
An = [Iai(n) -k foi r(x) dxl< k 6§, 1=0,1],

t
vhere § satisfies 0 < 26 < ftl r(x) dx. Since
o

a,(n) n (t)D)+...+ n (t,) a.s t
1k AL . B e Ioi e o

by the strong law of large numbers for i=0,1, we have P{lim sup A:] = 0,
and the remainder of the proof is identical with that of MP(1965).
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Supposc System ] fails at times

1 1 1 1. 1 1 1

1.e-5 55 00° 100 80° 150F F0¢ T00°  Since

estimates as before, we obtain

i.3..1.1 1
50’ 280’ 150" 70’ 100°

150 70°
obtain
; 1.3, 2 1
50° 280° 220° 100°
The reversal 223 < Sl is still left
22) 100 :
finally obtain ' 1
)
2 3
r(t) =1 785
3

320

<t <T

1
Sy for T
. ?(li - Tl’]) 1—]
r(t) = )
= e SOl <t «<T
T 1-1

2
100

If the failure times are pooled and uve denoted by T

‘80

for 0 <t <25

for 25 < t < 165

Sll = 25 hrs., 812 = 125, 813 = 240,
and that System 2 fails at times
Sg1 = 75 555 = 165, §,4 = 310, §,, =

1'

1'

]
' —— for 165 < t < 410,

Example 2: The method for obtaining the MLE of r(t) in the systenm

debugging model 18 1llustrated for two coples of the sam syatem.

alo.

Tz...., as before,

then our estinate of r(t), assuming no reversal, would be

1 1
and 7¢5 < 75

we have two reversals. By combining the sccond, third, and fourth

By combining the estimates R and i which represent a reversal, we

Combining as before, we




MLE for the Time Debugging Ends

To cstimate the end of the debugging period, we first compute the
MLE for the faflure ratc as above. Now supposc r(t) is decreasing
for 0 St s t, and constant for * 2 t, The MLI for the end point of
the debugging period 1s the teginning of the last averaging interval.
This is a consequence of the invariance property of the MLI; 1.e.,
the MLE of a function u(r(t)) of the failurc ratc is the same function
u(f(t)) of the failure rate MLE. En the notation of (3.1), Eo - Snk.
The MLFE for r(to) is the value of r(t) in the last intcrval, that
is r(to) " Tn +1,n" It turns out that in this casc the MLE of t, is
a poor onc (i.c., is not even consistent) since, as the number of ob-
servations increases to infinity, to converges almost surely to infinity,
as may be showm by using the result of Andcrsen (1954), p. 218, top.

Now suppose that we wish to estimate tl' the left-most pofnt beyond
which the faflur> rate does not decrease by more than €. Specifically,

*
s inf{t: r(t) - lim r(t) < ¢}. Denote by k the smallest index k
t-+o
’ — & LT . s -
such that r\Sk) r(Sn) < €. Then the MLE for ty is ty Sk*' Again we

t

are using the invariance property of the MLE described above.

Since ;(t) is a consistent estimator of r(t), it follows readily
that El is a consistent estimator of tl' assuming r(t) is strictly de-
creasing in any interval containing tl.

4. CONSERVATIVE CONFIDENCE BOURDS

In this section methods are presented which allow us to claim with
specified (high) assurance that the "stable”" failure rate of a system
which 1is being debugged during development and initial use i{s no greater
than a certain value,

The basic idca in obtaining the conscrvative confidence bound on
L the stable failure rate, may be stated intuitively as follows. The
observation, xi, is a random variable from a distribution whose failure
rate at each point of time is at lcast as great as L i=1,...,n.
Therefore, if onec uses observations Xl. X2, ceey Xn to estimate a single
failure rate (pretending that all the X1 are from a common exponential
distribution), the estimate will tend to be higher than T, Similarly,

an upper confidence bound for this common failure rate, calculated from
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the obscrvations Xl. XZ. 00 O xn as though they were a sample from a
single exponential distribution, will constitute a conservative upper
confidence bound for T, We make these idcas precise now.

lemma 4.1. Let x1 have distribution F(x), X2 have conditional

distribution
F(x1+x) - F(xl)

P(Xl)

x1 have conditional distribution

F(Si_1+x) - P(Si-l)

- 3 Lonlsy
F(Si-l)
where F has failure rate r(t) > r, for all t > 0. Let Yl’ Yz, ...,Yn
be independent observations from the exponential distribution with
failure rate L Then % ? X1 is stochastically smaller* than ZI; Yi'
Proof. First assume that F is continuous. Let the random var-
iables Xl, x1 + Xz, 50 O z:g Xi bensimultaneously transformed into ran-

dom variables Yi, Yi + Yé, cees T, Yi under the transformation

4.1) Y 4. 4¥) .- %— log F(X, + oo #X), 1= 1,0, n
(o]

Then for i =1, ..., n,

C s ol e e L 1og F 1.
P[Yi > u) = P[ - log F(X1 + ... 4 xi) + ¥ log F(X1 + ...+ xi-l) > u)

o
i‘(x1+...+x )
i
= P llog - < - r.u
i F(X +...4X, )
[F(x . E
b F(k1+...+xi) r,u ru
- - < e = e q
[F(X +ooo#X, )

since the random variable

r(x1+...+x1)

FOX#o 4K, )

*
The random variable U is said to be stochastically smaller than
the random variable V 1f P(U > t) < P(V > t) for each real value t.




*
is uniformly distributed on [0,1).  Thus, the Y!

1P e Ya arce

independently distributed according to

-F X
Gr (x) =1-c¢ .

0

the exponential distribution with failure rate vy

Next observe that if y = --%— log F(x), then

dy = Iiil > 1 for all x > 0.

Thus, under the transformation (4.1)

+ ...+ Y' 22X+ .0 4+ X,
n 1 n

— -

*i
It follows from Lehmann (1959), Lemma 1, p. 73,  that XT Y1 is

stochastically larger than 2'1‘)(1.

1f F is not continuous, the same result may be obtuiued by
limiting argumcnts.”

We now apply Lemma 4.1 to obtain a conservative confidence
bound on T, from c¢bservations Xl, b o 8% xn.

Since Y .,-Yn arc exponential with failure rate T

l’
xi_a(Zn)/ZE?Yi is an upper 100(l-0) percent confidence bound on

L) where xf_a(Zn) is the 100(1-a) percentile of the chi-square

distribution with 2n depreces of freedom. Hence

*If a random variable T has survival probability function ﬁ, a
continuous function, then the random variable il(T) is uniformly dis-
tributed on [0,1]); F(S;.; + x)/F(S;_) is the conditional survival
probability function of X; given S{-1°

*This Lemma states: '"Let F_ and F, be two cumulative distri-
bution functions on the real line. Then Fy(x) s Fo(x) for all x if
and only if there exist two nondecreasing functions f_and f,, and
a random variable V, such that (a) fo(v) < fl(v) for all v; and (b)
the distributions of fo(v) and fj(V) ave Fo and Fl respectively." 1In
our case take

1 -
fo(v) = v, fl(v) I log F(v), Fo = F, Fl = Gr c
o o




l-a

=15~

2 n 2 n
- P[ro < xl_a(Zn)/ZZ1 Yil < P(ro < xl_a(Zn)/ZE1 xij.

Thus xi_a(Zn)/ZE; X, is a conservative 100(1-a) percent upper confi-

dence bound on L Note that if F is the exponential distribution,

the confidence bound is exact.

Examples
(1)

(11)

In Example 1, n = 7 and in - 410.2 Choosing a = .05, we
find from chi-square tables that X.95(14) = 23.7. Thus, a
conservative 95 percent upper confidence bound on r, is
23.7/820 = .0289., That is, P[ro < .0289) > .95.
The data in Example 2 come from two coples of the system,
The procedure for more than one copy of the system is essen-
tially the same as that for one copy of the system, viz. a
conservative 100(1-a) percent upper confidence bound on r,

2 k M k
is x1_0(2n)/2);1 21 xij’ where n = Zl n, k is the number of
copies, and n, is the number of observations on the i-th copy.
For the data in Example 2, k = 2, n = 3, n, = 4 (so that
n=17), and LI X1j = 650. Choosing a = .05, a conservative
95 percent upper confidenca bound on r, is 23,7/1300 = ,018.

That is, P[ro < .018] > .95.
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